The Derivative Function and its Interpretations

1. Let $V(t)$ be the volume, in gallons, of the water in the bathtub as a function of time in seconds.
(a) What are the units of $V^{\prime}(t)$?
(b) What does $V^{\prime}(t)$ indicate in practical terms?
(c) What does it mean if $V^{\prime}(t)$ is negative?
(d) Sketch a possible $V(t)$ that corresponds to someone filling up the tub, taking a bath, and then draining the tub.
(e) Sketch a possible $V^{\prime}(t)$ that corresponds to someone filling up the tub, taking a bath, and then draining the tub.
2. Let $s(t)$ be the height of a sunflower plant, in centimeters, as a function of time. Let t be measured in days since the seed germinates.
(a) What is the meaning of $s(12)=78$?
(b) What are the units of $s^{\prime}(t)$?
(c) What is the meaning of $s(12)=1.5$?
(d) Based on the above, estimate the value of $s(14)$.
(e) Sketch a possible graph for $s(t)$.
(f) Sketch a possible graph for $s^{\prime}(t)$.
3. Let $f(r)$ give the area in cm^{2} of a pizza as a function of its radius r in cm .
(a) Algebraically determine the derivative of $f(r)$ at $r=8$.
(b) Algebraically determine the derivative of $f(r)$ as a function of r.
(c) What is the meaning of $f(5)$?
(d) What is the meaning of $f^{\prime}(6)$?
(e) Why is $f^{\prime}(6)>f^{\prime}(5)$?
4. Let $g(v)$ be the fuel efficiency of a car traveling at v miles per hour. What is the practical meaning of the statement:

$$
g^{\prime}(55)=-0.54 ?
$$

