Calculus I Midterm

October 21-23, 2008

Important Directions

- You may not collaborate on this exam; do not work with others.
- You may consult your notes, your textbook, or any other written material while doing this test. You may use calculators and computer programs.
- This exam is untimed, but unless I hear to the contrary, I expect you to finish by noon on Thursday, October 23.
- When you are done with the exam, give it to me or slip it under my office door. Don't put it my mailbox.
- If you have clarifying questions on the exam, please ask me. Do not ask the TAs.
- To receive full credit on most of these problems you must show your work clearly.

1. Short Answers. No explanations needed.
(a) Which function dominates as $x \rightarrow \infty$: x^{3} or $900 x$?
(b) Which function dominates as $x \rightarrow \infty: x^{1 / 9}$ or x^{-9} ?
(c) What is the period of $g(x)=3 \cos (7 x)+4$?
(d) Solve for $t: 7^{t+1}=711$.
2. Let $f(x)=3 x^{2}$.
(a) Algebraically (i.e. without making a table of numbers or using a calculator) determine the derivative of $f(x)$.
(b) Use the power rule to determine the derivative of $f(x)$.
3. Numerically determine the derivative of $\log (3 x)$ when $x=2$. (Do not use any differentiation short cuts you might have learned in other classes.)
4. Alan Greenspan's faith in the free market decreases by 9% every month after October 1. On October 1, Greenspan's faith was rated at 93. (In this scale, 100 corresponds to Milton Friedman, and 0 indicates a belief in rigid, Soviet-style central planning.)
(a) Write an equation for $F(t)$, Alan Greenspan's faith t months after October 1.
(b) Sketch a graph of Greenspan's faith as a function of time. Be sure to label the axes and any intercept(s).
(c) When will Greenspan's faith be approximately 25 ?
5. (a) Sketch a function that has a positive first derivative for $x<-1$, a derivative of zero for $-1<x<5$ and a negative first derivative for $x>5$.
(b) Call this function $f(x)$. On the same axes as your original graph, sketch $f(x-3)$ and $f(x)-3$. Make it clear which function is which.
(c) Is your $f(x)$ invertible? Is it possible to come up with an $f(x)$ that satisfies the criteria of question 5 a that is invertible? Why or why not?
6. Let $F(T)$ be the cost of heating your house, in dollars per day, when the average outside temperature is T Celsius degrees.
(a) Make a rough sketch a possible graph of $F(T)$. (There are many possible answers.)
(b) What is the meaning of $F(4)=3.20$?
(c) What is the meaning of $F^{-1}(5)=-2.5$?
(d) What are the units of $F^{\prime}(T)$?
(e) In practical terms what does $F^{\prime}(-4)=-.17$ mean? Be sure to explain why the minus sign is there.
7. For each of the graphs in Fig. 1, find a possible formula for the function. If there are any constants in your formula, indicate if those constants are positive or negative.

Figure 1: Graphs for problem 7.
8. Let $C(q)$ be the cost, in euros, of producing q pounds of Camembert cheese. Suppose that $C(10)=25$ and that $C^{\prime}(25)=2.1$. Estimate $C(8.5)$.
9. For the function in Fig. 9:
(a) Estimate $f^{\prime}(1.5)$.
(b) Estimate $f^{\prime}(5)$.
(c) Sketch $f^{\prime}(x)$.

Figure 2: Graph for problem 9.
10. Answer the following questions for the function in Fig. 3. Briefly explain or illustrate you answer.
(a) Which is larger $f(2)$ or $f(4)$?
(b) Which is larger $f^{\prime}(2)$ or $f^{\prime}(4)$?
(c) Which is larger $f^{\prime}(2)$ or $\frac{f(4)-f(2)}{4-2}$?
(d) What is the sign of $f^{\prime \prime}(3)$?

Figure 3: Graph for problem 10.
11. Answer the following questions for the function $h(x)$ shown in Fig. 4. Briefly explain or illustrate you answer.
(a) For what values of x is $h(x)$ positive?
(b) For what values of x is $h^{\prime}(x)$ positive?
(c) For what values of x is $h^{\prime \prime}(x)$ positive?

Figure 4: Graph for problem 11.

