Chapter 3.3: Practicing the Product Rule Calculus I

College of the Atlantic. October 17, 2022

- 1. Take the derivative of the following functions:
 - (a) $f(x) = 4^x + x^2 + 4 + \ln(4)^x + \ln(4)$.
 - (b) $f(x) = x^2 4^x$
 - (c) $f(x) = x^3 e^x$
 - (d) $f(x) = (2x^3 e^x)\sqrt{x}$
 - (e) $f(x) = 3e^{\sqrt{x}}$
- 2. Calculate the derivative of $f(x) = x^7$ two different ways:
 - (a) Use the power rule.
 - (b) Write f(x) = g(x)h(x), with $h(x) = x^3$ and $g(x) = x^4$. Use the product rule.
 - (c) Are your answers the same?
- 3. The temperature varies with height h according to $T(h) = 40(0.92)^h$, where h is measured in km above sea level. A bird is flying straight up at a constant speed of 12 km/hr.
 - (a) What is the rate of change of the temperature with respect to the altitude h when h = 2?
 - (b) What is the rate of change of the temperature experienced by the bird when it is at a height of 2 km?
- 4. As in the previous problem, temperature varies with height h according to $T(h) = 40(0.92)^h$, where h is measured in km above sea level. A bird is flying straight up in such a manner that its altitude as a function of time t is given by $h(t) = 3t^2$, where t is measured in minutes and h in kilometers.
 - (a) What is the altitude of the bird after 2 minutes?
 - (b) At that altitude, what is the rate of change of the temperature with respect to the altitude h?
 - (c) At that altitude, what is rate of change of the temperature experienced by the bird?