Chapter 3.3: Practicing the Product Rule
 Calculus I

College of the Atlantic. October 17, 2022

1. Take the derivative of the following functions:
(a) $f(x)=4^{x}+x^{2}+4+\ln (4)^{x}+\ln (4)$.
(b) $f(x)=x^{2} 4^{x}$
(c) $f(x)=x^{3} e^{x}$
(d) $f(x)=\left(2 x^{3}-e^{x}\right) \sqrt{x}$
(e) $f(x)=3 e^{\sqrt{x}}$
2. Calculate the derivative of $f(x)=x^{7}$ two different ways:
(a) Use the power rule.
(b) Write $f(x)=g(x) h(x)$, with $h(x)=x^{3}$ and $g(x)=x^{4}$. Use the product rule.
(c) Are your answers the same?
3. The temperature varies with height h according to $T(h)=40(0.92)^{h}$, where h is measured in km above sea level. A bird is flying straight up at a constant speed of $12 \mathrm{~km} / \mathrm{hr}$.
(a) What is the rate of change of the temperature with respect to the altitude h when $h=2$?
(b) What is the rate of change of the temperature experienced by the bird when it is at a height of 2 km ?
4. As in the previous problem, temperature varies with height h according to $T(h)=40(0.92)^{h}$, where h is measured in km above sea level. A bird is flying straight up in such a manner that its altitude as a function of time t is given by $h(t)=3 t^{2}$, where t is measured in minutes and h in kilometers.
(a) What is the altitude of the bird after 2 minutes?
(b) At that altitude, what is the rate of change of the temperature with respect to the altitude h ?
(c) At that altitude, what is rate of change of the temperature experienced by the bird?
