Chapter 3.5: Differentiating Trig Functions Calculus I

College of the Atlantic. October 24, 2022

1. Take the derivative of the following functions:
(a) $f(x)=\sin (2 x)$
(b) $f(x)=\cos (x) \sin (x)$
(c) $f(x)=e^{-\cos (2 x)}$
(d) $f(x)=\sin ^{2}(x)$
(e) $f(x)=\sin \left(x^{2}\right)$
2. Let $f(x)=\sin (x)$.
(a) Sketch $f(x)$ and $f^{\prime}(x)$.
3. Let $g(x)=\sin (2 x)$.
(a) Determine $g^{\prime}(x)$.
(b) Sketch $g(x)$ and $g^{\prime}(x)$.
(c) Why do the graphs have the shape they do?
4. Let $g(x)=\sin \left(x^{2}\right)$.
(a) Determine $g^{\prime}(x)$.
(b) Sketch $g(x)$ and $g^{\prime}(x)$.
(c) Why do the graphs have the shape they do?
5. Let $h(x)=\sin (\ln (x))$.
(a) Determine $h^{\prime}(x)$.
(b) Sketch $h(x)$. Puzzle over this for a bit, and be suspicious of whatever plots wolfram or desmos makes for you. What happens to $h^{\prime}(x)$ as x gets large?
