Chapter 4.2: Optimization
 Calculus I

College of the Atlantic. October 27, 2022

1. Let $g(x)=x^{2}-6 x+11$.
(a) What is the global minimum and maximum of $g(x)$ on the interval $[1,4]$?
(b) What is the global minimum and maximum of $g(x)$ on the interval [3, 4]?
2. Consider $f(x)=x e^{-x^{4}}$, where x is always greater or equal to zero. What is the maximum value of $f(x)$? What is the minimum value?
3. Sketch a continuous function that has local minima at 2 and 4 , a global maximum at 3 , and no other extrema.
4. Sketch a continuous function that has no critical points but has an inflection point at $x=-2$.
5. In the figure is shown a plot of the cost of running a school as a function of the number of students.
(a) What is the average cost per student if the enrollment is 100 ?
(b) What is the average cost per student if the enrollment is 500 ?
(c) What number of students leads to the lowest average cost per student?

6. A grapefruit is tossed straight up with an initial velocity of $50 \mathrm{ft} / \mathrm{s}$. The grapefruit is 5 feet above the ground when it is released. Its height at time t is given by

$$
\begin{equation*}
h(t)=-16 t^{2}+50 t+5 \tag{1}
\end{equation*}
$$

(a) How high does it go before returning to the ground?
(b) At what time does the grapefruit to reach its maximum height?

