Chapter 4.6: Related Rates (and Implicit Differentiation)
 Calculus I

College of the Atlantic. November 3, 2022

1. Implicitly take the derivative of the following functions. Solve for y^{\prime} if possible.
(a) $x^{2}+y^{2}=16$
(b) $x^{2} y+y^{3}=x$
2. Consider a spherical balloon of radius r (in cm). The volume of a sphere is given by $V=\frac{4}{3} \pi r^{3}$.
(a) Find $\frac{d V}{d r}$ when $r=1$ and $r=2$, and give a practical interpretation of your answers.
(b) Suppose the balloon is being inflated in such a way that $g(t)=2 t$ centimeters after t seconds. How fast is the volume of the balloon increasing when $r=1$? How fast when $r=2$?
(c) How suppose that air is being blown into the balloon at a constant rate of 50 cubic centimeters per second. How fast is the radius of the balloon increasing when $r=1$? How fast when $r=2$?
3. A three meter ladder stands against a high wall. The foot of the ladder moves outward at a constant speed of $0.1 \mathrm{~m} / 2$.
(a) When the foot is 1 meter from the wall, how fast is the top of the ladder falling?
(b) When the foot is 2 meters from the wall, how fast is the top of the ladder falling?
