Homework Six
 Calculus I
 College of the Atlantic

Due Friday, October 21, 2022

There are two parts to this assignment.
Part 1: WeBWorK. Do Homework 06A and 06B on WeBWorK. The WeBWorK page is here: https://webwork.runestone.academy/webwork2/coa-feldman-es1024i-fall-2022/. I recommend doing the WeBWorK part of the homework first. This will enable you to benefit WeBWorK's instant feedback before you do part two.

Part 2: Non-WeBWorK problems. Here are some instructions for how to submit this part of the assignment.

- Do the problems by hand using pencil (or pen) and paper. There is no need to type this assignment.
- Make a pdf scan of your work using genius scan or some similar scanning app. Please make the homework into a single pdf, not multiple pdfs.
- Submit the assignment on google classroom. Please don't email it to me.
- If you want, you can do the non-WeBWorK problems in pairs and submit only one assignment for the two of you.

Here are some non-WeBWorK problems.

1. The temperature T of an object as a function of time is described by the following function:

$$
\begin{equation*}
T(t)=20+40 e^{-k t} \tag{1}
\end{equation*}
$$

where $k=0.003, t$ is measured in seconds, and temperature is measured in Celsius.
(a) Sketch $T(t)$.
(b) What is the initial temperature of the object?
(c) What is the temperature of the object after a long time (as t gets very large)?
(d) At what time is the temperature 30 Celsius?
(e) At $t=200$, at what rate is the object cooling?
2. Consider the function $f(x)=x e^{x}$.
(a) For what values of x is $f(x)$ concave up? Figure this out by taking two derivative of $f(x)$ and then determing what range of x values makes the second derivative positive.
(b) Sketch the function using limits that make it clear where the concavity changes.
3. (Hint: Thinking about units will be very helpful.) Let $f(v)$ be the gas consumption in liters $/ \mathrm{km}$ of a car going at a speed v, measured in $\mathrm{km} / \mathrm{h} 4$. This means that $f(v)$ tells you how many liters of gas the car uses to go one kilometer when it is traveling at a speed of v. Suppose we know that

$$
\begin{equation*}
f(80)=0.05, \text { and } f^{\prime}(80)=0.0005 \tag{2}
\end{equation*}
$$

(a) Let $g(v)$ be the distance the same car gravels on one liter of gas if it is traveling at speed v.
i. How are $f(v)$ and $g(v)$ related? (Your answer should be an equation.)
ii. Determine $g(80)$ and $g^{\prime}(80)$.
iii. What is the practical meaning of $g^{\prime}(80)$?
(b) Let $h(v)$ be the gas consumption in liters per hour. So $h(v)$ tells you how many liters of gas the car uses in one hour if it is traveling at a speed of v.
i. How are $f(v)$ and $h(v)$ related? (Your answer should be an equation.)
ii. Determine $h(80)$ and $h^{\prime}(80)$.
iii. What is the practical meaning of $h^{\prime}(80)$?

