Homework Seven
 Calculus I
 College of the Atlantic

Due Friday, October 28, 2022

There are two parts to this assignment.
Part 1: WeBWorK. Do Homework 07A and 07B on WeBWorK. The WeBWorK page is here: https://webwork.runestone.academy/webwork2/coa-feldman-es1024i-fall-2022/. I recommend doing the WeBWorK part of the homework first. This will enable you to benefit WeBWorK's instant feedback before you do part two.

Part 2: Non-WeBWorK problems. Here are some instructions for how to submit this part of the assignment.

- Do the problems by hand using pencil (or pen) and paper. There is no need to type this assignment.
- Make a pdf scan of your work using genius scan or some similar scanning app. Please make the homework into a single pdf, not multiple pdfs.
- Submit the assignment on google classroom. Please don't email it to me.
- If you want, you can do the non-WeBWorK problems in pairs and submit only one assignment for the two of you.

Here are some non-WeBWorK problems.

1. (a) Find the equation of the line tangent to $f(x)=\ln (x)$ at $x=1$.
(b) What is the value of the tangent line at $x=1.01, x=1.1$, and $x=2$?
(c) What are the values of $\ln (x)$ at $x=1.01, x=1.1$, and $x=2$?
(d) Are the values of the tangent line above or below $\ln (x)$? How is your answer related to the concavity of $\ln (x)$? A sketch of the function and the tangent line will be helpful.
2. Consider the scenario illustrated in the figure: a metal bar of length ℓ is attached to a point P on the edge of a circle of radius a. The point Q , at the other end of the metal rod, slides back and forth along the x axis. Note that the triangle OPQ is not a right triangle.
(a) Find an expression for x as a function of the angle θ. Your answer will have an a and and ℓ in it.
(b) $x(\theta)$ for the values $a=3$ and $\ell=8$. Does the plot make sense?
(c) Suppose the circle is rotating at a rate of 2 radians per second, and that $a=3$ cm and $\ell=8 \mathrm{~cm}$.
i. How fast is the point Q moving when $\theta=\pi / 4$?
ii. How fast is the point Q moving when $\theta=\pi / 2$?
iii. How fast is the point Q moving when $\theta=\pi$?
iv. How fast is the point Q moving when $\theta=3 \pi / 2$?
(d) Do the signs and magnitudes of the speeds you found above make sense? Explain briefly.

