Chapter 3.4: Practicing the Chain Rule

 Calculus ICollege of the Atlantic. Fall 2021

1. Take the derivative of the following functions:
(a) $f(x)=e^{3 x}$
(b) $f(x)=3 e^{3 x}$
(c) $f(x)=x^{3} e^{x}$
(d) $f(x)=e^{x^{3}}$
(e) $f(x)=x^{3} e^{x^{3}}$
(f) $f(x)=x^{3}+e^{x^{3}}$
2. The length L of a metal rod depends on temperature T such that the length increases by 2.5 cm for every degree increase in temperature. If the temperature is increasing at 4^{o} per hour, how fast is the length of the metal rod increasing?
3. A circular oil slick is growing. At a certain moment the radius is 7 km and the radius is growing at a rate of $0.2 \mathrm{~km} / \mathrm{hr}$. How fast is the area of the oil slick growing at this moment?
4. $f(x)=\sqrt{1+x^{3}}$. Calculate $f^{\prime}(3)$ and $f^{\prime}(5)$. Which is bigger, and why? Is $f(x)$ concave up or concave down?
