Chapter 10.2 More with Taylor Series Calculus II
 Spring 2021
 College of the Atlantic

In a previous episode of Calculus II, we considered approximating a function $f(x)$ by a polynomial $P(x)$:

$$
\begin{equation*}
f(x) \approx P(x)=C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\cdots, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n}=\frac{f^{(n)}}{n!} \tag{2}
\end{equation*}
$$

We derived this equation by requiring that all the derivatives of $f(x)$ and $P(x)$ agree at $x=0$.

Famous and Useful Taylor Series

$$
\begin{gather*}
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \tag{3}\\
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\cdots \tag{4}\\
\sin (x)=? ? \tag{5}
\end{gather*}
$$

1. Determine the Taylor series for $\sin (x)$ using Eq. (2).
2. Once you have the Taylor series for $\sin (x)$, take its derivative. Does the answer look familiar?
3. Take the derivative of the Taylor series for e^{x}. What do you get?
4. What is

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\sin (x)}{x} ? \tag{6}
\end{equation*}
$$

To answer this question, express $\sin (x)$ as a Taylor series.
5. Find the Taylor series for $f(x)=e^{-x^{2}}$. There is an easy and a hard way to do this. Choose the easy way.
6. Use your answer to the previous question to find a series representation of the anti-derivative of $e^{-x^{2}}$.

The Binomial Series

1. Use Eq. (2) to determine the first three terms in the Taylor Series of $f(x)=(1+x)^{p}$ near $x=0$. This Taylor series is called the binomial series.
2. Use the binomial series to determine approximate numerical values for:

$$
\begin{align*}
& \frac{1}{0.99^{2}} \tag{7}\\
& \frac{1}{0.98} \tag{8}\\
& \frac{1}{0.999^{2}} \tag{9}
\end{align*}
$$

