Chapter 5.2: The Definite Integral Calculus II

College of the Atlantic

1. A function $f(x)$ is shown above. Note the location of the vertical zero axis. Use the graph to determine values of the following:
(a) $\int_{-4}^{-2} f(x) d x$
(b) $\int_{-2}^{0} f(x) d x$
(c) $\int_{-4}^{0} f(x) d x$
(d) $\int_{0}^{2} f(x) d x$
(e) $\int_{2}^{3} f(x) d x$
2. What do the above results let you conclude about

$$
\begin{equation*}
\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=? ? ? \tag{1}
\end{equation*}
$$

3. Estimate $\int_{2}^{4} x^{2} d x$ using a Δt of 0.5 .
4. Evaluate $\int_{0}^{2}(2+x) d x$ by graphing the function $f(x)=2+x$.
5. Let $r(t)$ be the rate, in people per minute, at which people arrive at the dining hall for dinner, where t is measured in minutes past 5:30. Consider the following integral:

$$
\begin{equation*}
\int_{0}^{30} r(t) d t \tag{2}
\end{equation*}
$$

(a) What are the units of the above integral?
(b) What is the practical interpretation of the above integral?
(c) What are the units of $\frac{d r}{d t}$?
(d) What is the practical interpretation of $\frac{d r}{d t}$?
6. Determine the average value of $f(x)=x^{2}$ on the interval from -1 to 1 .
7. Determine the average value of $f(x)=x^{3}$ on the interval from -1 to 1 .

