Chapter 5.3:

Fundamental Theorem, Averages, Interpretations

Calculus II

College of the Atlantic

1. Find the average value of x^{2} on the interval from 0 to 1 . Illustrate this average value on a graph of x^{2}.
2. Find the average value of x^{3} on the interval from 0 to 1 . Illustrate this average value on a graph of x^{3}.
3. Which function $\left(x^{2}\right.$ or $\left.x^{3}\right)$ has a larger average value from 0 to 1 ? Does this make sense geometrically? How can you see geometrically that the average value for both functions has to be less than a half?
4. Evaluate the following definite integrals using the fundamental theorem:

$$
\begin{align*}
& \int_{-2}^{2} e^{x}+x^{2} d x \tag{1}\\
& \int_{-2}^{2} e^{t}+t^{2} d t \tag{2}
\end{align*}
$$

5. Let $r(t)$ be the rate at which snow falls, in inches per hour, where t is measured in hours since midnight. What is the practical interpretation of the following equations:

$$
\begin{gather*}
r(8)=1.2 \tag{3}\\
r^{\prime}(8)=-0.2 \tag{4}\\
\int_{6}^{14} r(t) d t=9.5 \tag{5}
\end{gather*}
$$

