Chapter 7.7: Improper Integrals (What if the Cat Runs Forever?) Calculus II Spring 2021 College of the Atlantic

Consider the following two functions:

$$f(x) = \frac{1}{x^2}, \quad g(x) = \frac{1}{\sqrt{x}}.$$
 (1)

1. Evaluate the following definite integrals:

$\int_{1}^{10} f(x) dx$	
$\int_1^{100} f(x) dx$	
$\int_{1}^{10000} f(x) dx$	
$\int_{1}^{100000} f(x) dx$	

- 2. What happens to $\int_1^b f(x) dx$ as b gets larger and larger?
- 3. Now, evaluate these definite integrals:

$\int_{1}^{10} g(x) dx$	
$\int_1^{100} g(x) dx$	
$\int_{1}^{10000} g(x) dx$	
$\int_{1}^{100000} g(x) dx$	

- 4. What happens to $\int_1^b g(x) dx$ as b gets larger and larger?
- 5. Why is your answer to 4 different than your answer to 2? Try sketching f(x) and g(x).

Improper Integral Practice

Evaluate the following improper integrals.

$$\int_0^\infty 3e^{-4x} \, dx$$

2.

$$\int_0^\infty x e^{-2x} \, dx$$

(The anti-derivative of xe^{-2x} is $-(1/4)e^{-2x}(2x+1)$.)

3.
$$\int_0^\infty \sqrt{1+x^2} \, dx$$

4.
$$\int_0^\infty e^{-x} \sin(x) \, dx$$

The anti-derivative of $e^{-x}\sin(x)$ is $\frac{-e^{-x}}{2}(\sin(x) + \cos(x))$.

5. For what values of p does

$$\int_1^\infty x^p\,dx$$

diverge?

6. Does

$$\int_{1}^{\infty} \frac{1}{x^3 + 2} \, dx$$

converge? Answer this without evaluating the integral.