# Chapter 8.2 \& 8.4: Arc Length and Density Calculus II <br> Spring 2021 

College of the Atlantic

1. Use the arc length formula to calculate the arc length of $f(x)=(4 / 3) x+2$ from $x=3$ to $x=6$. Explain why your answer is comforting. It's probably easiest if you resist the urge to convert any square roots you might encounter into decimals.
2. Let $f(x)=x^{2}$. How long is the curve from $x=0$ to $x=1$ ?
3. Let $f(x)=x^{3}$. How long is the curve from $x=0$ to $x=1$ ?
4. Let $f(x)=\sin (x)$. How long is the curve from $x=0$ to $x=\pi$ ?
5. A cylindrical pipe has a radius of 5 cm and is 2 meters long.
(a) What is the volume of the pipe?
(b) If the pipe was filled with water, what would its mass be?
(c) Suppose there is some pollution in the water. The density of the pollution is given by $\rho(x)=0.002 e^{-2 x}$, in units of grams per cubic meter. Determine the total mass of the pollution in the pipe.
6. The air density $h$ meters above the surface of the earth is given by:

$$
\begin{equation*}
\rho(h)=1.28 e^{-0.000124 h}, \tag{1}
\end{equation*}
$$

where $h$ has units of km and the units of $\rho$ are $\mathrm{kg} / \mathrm{m}^{3}$. What is the mass of a cylindrical column of air 2 meters in diameter and 25 kilometers high, with a base on the surface of the earth?

