Chapters 8.1 \& 8.2: Volumes and Arc Lengths Calculus II
 Spring 2021

College of the Atlantic

1. Find the volume of the solid obtained by rotating the region bounded by $y=x^{2}$ and $x=2$ around the x-axis.
2. Find the volume of the solid obtained by rotating the region bounded by $y=x^{2}, x=2$, and $y=0$ around the y-axis.
3. The region bounded by the curves $y=x$ and $y=x^{2}$ is rotated about the line $y=3$. What is the volume of the resulting solid?
4. A hemispherical bowl of radius 12 inches is filed to a depth of 3 inches. Find the volume of water in the bowl.
5. A hemispherical bowl of radius r is filled to a depth of h. Find a formula for the formula of the volume of the water. Check your formula by examining what happens when $h \rightarrow r$.
6. Use the arc length formula to calculate the arc length of $f(x)=1+3 x$ from $x=1$ to $x=2$. Explain why your answer is comforting. It's probably easiest if you resist the urge to convert any square roots you might encounter into decimals.
7. Let $f(x)=x^{2}$. How long is the curve from $x=0$ to $x=1$?
8. Let $f(x)=x^{3}$. How long is the curve from $x=0$ to $x=1$?
9. Let $f(x)=\sin (x)$. How long is the curve from $x=0$ to $x=\pi$?
