Chapter 9.3: Convergence of Series Calculus II Spring 2021
 College of the Atlantic

1. For each of the following series, do the following:
(a) Use wolfram alpha to compute the following partial sums: $S_{10}, S_{100}, S_{1000}$.
(b) Does the series appear to be converging? If so, what is it converging to?

$$
\begin{gather*}
\sum_{n=0}^{\infty} 3\left(\frac{1}{2}\right)^{n} . \tag{1}\\
S=\sum_{n=1}^{\infty} \frac{1}{n} . \tag{2}\\
S=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n} . \tag{3}\\
S=\sum_{n=1}^{\infty} \frac{6}{n^{2}} . \tag{4}\\
S=\sum_{n=0}^{\infty} \frac{1}{n!} . \tag{5}
\end{gather*}
$$

2. Do the following series converge or diverge? Answer without using wolfram alpha.

$$
\begin{gather*}
\sum_{i=0}^{\infty}\left(\frac{5}{4}\right)^{i} \tag{6}\\
\sum_{n=1}^{\infty} \frac{4}{n^{2}} \tag{7}\\
\sum_{n=1}^{\infty} \frac{4}{n^{2}+3} \tag{8}\\
\sum_{n=1}^{\infty} \frac{4}{n^{2}-3} \tag{9}\\
\sum_{n=589}^{\infty} \frac{4}{n+3} \tag{10}\\
589,744,127 \tag{11}\\
\sum_{k=0}^{n+3}
\end{gather*}
$$

