Class 10: The Fundamental Theorem of Calculus Anti-Derivatives, Graphically and Analytically Calculus II

College of the Atlantic. January 30, 2023

Figure 1: A plot of $f^{\prime}(t)$, the rate, in thousands of gallons a day, at which water flows into a reservoir. A negative rate means that water is flowing out.

1. Determine $f(t)$, the water level in the reservoir as a function of time, given that at $t=0$ the water level was 10. Enter your results in the table.
2. Determine $f(t)$, the water level in the reservoir as a function of time, given that at $t=0$ the water level was 15 . Enter your results in the table.
3. Plot the two $f(t)$'s that you found on the graph provided.
4. When is the level of water in the reservoir increasing at the fastest rate?
5. When is the level of water in the reservoir the greatest?

Time	Water Level	Water Level
0	10	15
1		
2		
3		
4		
5		
6		

1. Take the derivative of the following functions:
(a) $f(x)=\frac{1}{x}$
(b) $f(x)=\sqrt{x}+4 x^{3 / 2}$
(c) $f(x)=2 e^{x}$
(d) $f(x)=2^{x}$
(e) $f(x)=2 \sin x$
(f) $f(x)=\ln (x)$
2. Find the following anti-derivatives:

$$
\begin{gather*}
\int 4 d x \tag{1}\\
\int 4 x d x \tag{2}\\
\int \frac{4}{x} d x \tag{3}\\
\int\left(y+y^{2}+y^{3}\right) d y \tag{4}\\
\int 2 \sin (x) d x \tag{5}\\
\int 4 t d t \tag{6}\\
\int \ln (x) d x \tag{7}
\end{gather*}
$$

3. Find the following definite integrals:

$$
\begin{gather*}
\int_{1}^{3} 4 x d x \tag{8}\\
\int_{1}^{3} 4 t d t \tag{9}\\
\int_{0}^{\pi / 2} \cos (x) d x \tag{10}\\
\int_{0}^{2 \pi} \cos (x) d x \tag{11}\\
\int_{-2}^{2} y^{5} d y \tag{12}
\end{gather*}
$$

4. What is the average value of $\cos (x)$ from $x=0$ to $x=\pi / 2$? Represent this average value graphically.
