Class 26: Power Series Calculus II

College of the Atlantic. March 8, 2023

Consider the following power series:

$$
\begin{equation*}
S(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \tag{1}
\end{equation*}
$$

We'll denote the partial sums by:

$$
\begin{equation*}
S_{N}(x)=\sum_{n=0}^{N} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \tag{2}
\end{equation*}
$$

Note that $S_{N}(x)$ is just a polynomial. E.g.,

$$
\begin{equation*}
S_{4}(x)=1-\frac{1}{2} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6} . \tag{3}
\end{equation*}
$$

1. Compute a handful of partial sums for two different values of x :

	$x=0.1$	$x=2$
$S_{2}(x)$		
$S_{10}(x)$		
$S_{100}(x)$		
$S_{1000}(x)$		

2. Do $S_{N}(0.1)$ and $S_{N}(2)$ appear to be converging?
3. Let's check convergence using the ratio test. For what values of x does this series converge?
4. Instead of thinking of $S(x)$ one point at a time, we can think of it as a function of x and graph it. Make plots of $S_{2}(x), S_{5}(x)$ and $S_{10}(x)$.

Another Power Series

Consider the following power series:

$$
\begin{equation*}
(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\frac{(x-1)^{5}}{5} \ldots . \tag{4}
\end{equation*}
$$

As before we'll denote the partial sums by $S_{N}(x)$. Note that $S_{N}(x)$ is a polynomial. Write out the first several partial sums as a function of x :

$$
\begin{align*}
S_{0}(x) & = \tag{5}\\
S_{1}(x) & = \tag{6}\\
S_{2}(x) & = \tag{7}\\
S_{3}(x) & = \tag{8}
\end{align*}
$$

1. Let's compute a handful of partial sums for two different values of x :

	$x=0.5$	$x=2.5$
$S_{1}(x)$		
$S_{10}(x)$		
$S_{100}(x)$		
$S_{1000}(x)$		

2. Do $S_{N}(0.1)$ and $S_{N}(2)$ appear to be converging?
3. Check convergence using the ratio test. For what values of x does $S(x)$ converge?
4. Instead of thinking of $S(x)$ one point at a time, we can think of it as a function of x and graph it. Make plots of $S_{2}(x), S_{5}(x)$ and $S_{10}(x)$.
