Class 28: Using Taylor Series
 Calculus II

College of the Atlantic. March 13, 2023
In a previous episode of Calculus II, we considered approximating a function $f(x)$ by a polynomial $P(x)$:

$$
\begin{equation*}
f(x) \approx P(x)=C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\cdots, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n}=\frac{f^{(n)}}{n!} \tag{2}
\end{equation*}
$$

We derived this equation by requiring that all the derivatives of $f(x)$ and $P(x)$ agree at $x=0$.

Super Famous and Super Useful Taylor Series

$$
\begin{gather*}
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \tag{3}\\
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\cdots \tag{4}\\
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}-\cdots \tag{5}
\end{gather*}
$$

1. Take the derivative of the Taylor series for $\sin (x)$. Does the answer look familiar?
2. Take the derivative of the Taylor series for e^{x}. What happens?
3. What is

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\sin (x)}{x} ? \tag{6}
\end{equation*}
$$

To answer this question, express $\sin (x)$ as a Taylor series.
4. Find the Taylor series for $f(x)=e^{-x^{2}}$. There is an easy and a hard way to do this. Choose the easy way.
5. Use your answer to the previous question to find a series representation of the anti-derivative of $e^{-x^{2}}$.

The Binomial Series: Also Quite Famous and Definitely Super Useful

1. Use Eq. (2) to determine the first three terms in the Taylor Series of $f(x)=$ $(1+x)^{p}$ near $x=0$. This Taylor series is called the binomial series.
2. Use the binomial series to determine approximate numerical values for:

$$
\begin{align*}
& \frac{1}{0.99^{2}} \tag{7}\\
& \frac{1}{0.98} \tag{8}\\
& \frac{1}{0.999^{2}} \tag{9}
\end{align*}
$$

3. In special relativity, the time interval $\Delta \tau$ experienced by someone moving at a constant speed v is given by

$$
\begin{equation*}
\Delta \tau=\sqrt{1-(v / c)^{2}} \Delta t \tag{10}
\end{equation*}
$$

where Δt is the time interval as measured in an inertial ("at rest") reference frame, and c is the speed of light, which is around $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
(a) Use a first-order binomial series approximation for the square root in Eq. (10) to derive an expression for $\Delta \tau-\Delta t$.
(b) Suppose a clock takes a plane flight from Boston to San Francisco. The flight takes six hours $(21,600 s)$ according to clocks on the ground. The plane flies at a speed of $230 \mathrm{~m} / \mathrm{s}$. How much longer does the flight take as measured by the clock on the plane?

Hey. Remember Imaginary Numbers?

1. Write down the Taylor series for $f(x)=e^{i x}$. Collect real and imaginary terms. What do you notice?
