Homework Two
 Calculus I
 College of the Atlantic

Due Friday, January 20, 2023

There are three parts to this assignment.
Part 1: WeBWorK. Do Homework 02 on WeBWorK. The WeBWorK page is here: https: //webwork-hosting.runestone.academy/webwork2/coa-feldman-es3012m-winter2023. I recommend doing the WeBWorK part of the homework first. This will enable you to benefit WeBWorK's instant feedback before you do part two.

Part 2: A Coding Exercise. Do the following on a new google colab notebook. When you are done, please attach the notebook on google classroom. Write a notebook that does the following:

1. Use the def command to define the function

$$
\begin{equation*}
f(x)=10 e^{-0.05 x} \cos (10 x / \pi) \tag{1}
\end{equation*}
$$

2. Plot the function from $x=0$ to $x=50$.
3. Make sure your plot looks nice and smooth.

Hints/reminders:

- Remember to import the modules you need.
- Remember to put np. in front of any math functions you need from numpy.
- The exponential function is exp. In other words:

$$
\begin{equation*}
e^{-5 t} \text { is } \exp (-5 * \mathrm{t}) \text { in python. } \tag{2}
\end{equation*}
$$

- Multiplication is indicated by a *. I.e., it's $10 * x$, not $10 x$.

Part 3: Non-WeBWorK problems. Here are some instructions for how to submit this part of the assignment.

- Do the problems by hand using pencil (or pen) and paper. There is no need to type this assignment.
- If you like working on a tablet, go for it.
- Make a pdf scan of your work using genius scan or some similar scanning app. Please make the homework into a single pdf, not multiple pdfs.
- Please, I am begging you, please don't scan your work in sideways. ©
- Submit the assignment on google classroom. Please don't email it to me.
- If you want, you can do the non-WeBWorK and coding in pairs and submit only one assignment for the two of you.

Figure 1: The rate that sleet is falling, in units of $\mathrm{cm} / \mathrm{hr}$, during the first three hours of a sleet/ice storm in Maine.

Here is a non-WeBWorK problem.

The figure below shows the rate at which sleet is falling, in units of centimeters per hour, during the first three hours of a sleet storm in Maine.

1. Come up with a lower estimate for the total amount of sleet that has fallen during the first three hours of the storm. use $\Delta t=0.5$ hours.
2. Come up with an upper estimate for the total amount of sleet that has fallen during the first three hours of the storm. use $\Delta t=0.5$ hours.
3. As Δt gets smaller and smaller, the upper and lower estimates get closer and closer to each other. How small a Δt wold you need to choose so that the difference between the upper and lower estimates was 0.1 cm .
