## Functions of two variables

On a separate sheet of paper is a numerical representation of a function of two variables. Let's call the two variables $x$ and $y$ and we'll call the function $f(x, y)$.

1. What would a plot of this function look like? Make a rough sketch?
2. At $x=1$ and $y=1$, is the function increasing in the $x$ direction? Is it increasing in the $y$ direction?
3. At $x=-1$ and $y=1$, is the function increasing in the $x$ direction? Is it increasing in the $y$ direction?
4. At $x=1$ and $y=-1$, is the function increasing in the $x$ direction? Is it increasing in the $y$ direction?
5. At $x=-1$ and $y=-1$, is the function increasing in the $x$ direction? Is it increasing in the $y$ direction?
6. Consider all the $x, y$ pairs for which $f(x, y)=1$. What does the set these $x, y$ pair look like? Make a sketch.
7. Consider all the $x, y$ pairs for which $f(x, y)=2$. What does the set these $x, y$ pair look like? Make a sketch.
8. Consider all the $x, y$ pairs for which $f(x, y)=3$. What does the set these $x, y$ pair look like? Make a sketch.
9. Let's suppose that $x$ measures the number of hours of sleep you get, measured above or below your average amount. I.e., if $x=0.5$, that means you got half an hour of sleep more than average. And let $y$ measure the temperature of the room in which you sleep, measured in degrees above or below the average temperature. ${ }^{1}$ The function $f(x, y)$ measures your unhappiness, in arbitrary units. The picture here, I guess, is that you have a set sleeping routine and don't like any disruption. Sketch and interpret, in words, the following:
(a) $f(1, y)$

[^0](b) $f(2, y)$
(c) $f(x,-1)$
(d) $f(x, 0)$
10. By staring at the numbers, guess a formula for the function $f(x, y)$.
11. Using this formula, come up with algebraic answers to questions 6-8.
12. Using this formula, come up with algebraic answers to question 9 .


[^0]:    ${ }^{1} \mathrm{Ok}$. I realize this isn't a very good example of a function. But it was hard to come up with something that seemed realistic given that I had decided to use both positive and negative $x$ and $y$ values.

