

Figure 1: Some Vectors.

A bunch of vectors are shown in Fig. 1. Without doing a calculation determine if the following quantities are positive, negative, or zero:

- 1. $\vec{E} \cdot \vec{B}$
- 2. $\vec{B} \cdot \vec{E}$
- 3. $\vec{D} \cdot \vec{D}$
- 4. $\vec{A} \cdot \vec{C}$
- 5. $\vec{A} \cdot \vec{E}$
- 6. $\vec{E} \cdot \vec{A}$

- 1. Consider the following three-dimensional vectors:
 - $\vec{u} = \vec{i} + \sqrt{3}\vec{k}$
 - $\vec{v} = \vec{i} + \sqrt{3}\vec{j}$
 - $\vec{w} = \sqrt{3\vec{i}} + \vec{j} \vec{k}$

Which, if any, of the vectors \vec{u} , \vec{u} , \vec{w} are perpendicular to each other?

- 2. What is $\vec{w} \cdot \vec{i}$?
- 3. What is $\vec{w} \cdot \vec{j}$?
- 4. In words, what does $\vec{w} \cdot \vec{j}$ mean?
- 5. Let $\vec{v} = 3\vec{i} 2\vec{j} + \vec{k}$. Find the equation of a plane that is perpendicular to \vec{v} and which goes through the point (1, 2, 3).
- 6. Find a vector normal to the plane z = 0.5x + 1.2y.
- 7. Let $\vec{u} = 4\vec{i} + 3\vec{j}$ and $\vec{v} = 3\vec{i} + 3\vec{j}$. What is the projection of \vec{u} onto \vec{v} ?