# 14.4-6: Gradient Vectors and Chain Rules Calculus III 

College of the Atlantic

1. Suppose $g(4)=10$, and $g^{\prime}(4)=2$. Estimate $g(4.3)$.
2. Suppose $g(4,6)=10, g_{x}(4)=2$, and $g_{y}(6)=3$
(a) Write down the differential of $g(x, y)$ at $(4,6)$.
(b) Estimate $g(4.3,5.8)$.
3. Consider the function $T(x, y, z)=e^{-\left(x^{2}+y^{2}+z^{2}\right)}$.
(a) Determine the gradient vector for general $x, y, z$.
(b) Determine the gradient vector at the following points:
i. $(0,0,0)$
ii. $(1,1,1)$
iii. $(1,0,0)$
(c) What is the directional derivative of $T$ in the $-\hat{z}$ direction at $(1,0,0)$ ?
(d) What is the overall "shape" of the gradient vector field? How is this consistent with the level surfaces for this function?
4. For some unknown reason, a square room is slowly expanding. All of its walls are increasing at a rate of 0.2 meters/day. How fast is the area of the room increasing when the side of the room is 8 meters long?
5. Let $f(a, b)=a^{2} b^{3}$. At a particular moment in time, $a=3$ and $b=4$. At this moment, $a$ is increasing at a rate of 2 units per second, while $b$ is decreasing at 3 units per second. How fast is the function changing at this moment?
6. Suppose that $z$ is a function of $x$ and $y: z=f(x, y)$. And suppose that $x$ and $y$ are both functions of $u$ and $v: x=g(u, v)$ and $y=h(u, v)$. How does $z$ vary with $u$ ? To answer this question you will need to derive a new chain rule formula.
7. Let the temperature along a metal rod be given by $H(x, t)$, where: $H$ is measured in Celsius degrees; $x$, the distance from the left end of the rod, is measured in centimeters; and $t$ in minutes. Interpret the following equations:
(a) $H(50,3)=123$.
(b) $H_{t}(50,3)=-2$.
(c) $H_{x}(50,3)=-0.2$.
(d) $H_{t x}(50,3)=0.05$.
8. Let the temperature in a metal rod be given by the function $T(x, t)=100 e^{-t} \sin (\pi x)$, where $t$ is measured in minutes and $x$ in meters. The rod is one meter long. (So $0 \leq x \leq 1$.)
(a) Sketch $T(x, 0)$ and $T(x, 0.1)$.
(b) Using the two sketches you just drew, determine the signs of $f_{x}, f_{t}, f_{x x}$, and $f_{x t}$ at $x=0.2$.
(c) Using the two sketches you just drew, determine the signs of $f_{x}, f_{t}, f_{x x}$, and $f_{x t}$ at $x=0.5$.
(d) Using the two sketches you just drew, determine the signs of $f_{x}, f_{t}, f_{x x}$, and $f_{x t}$ at $x=0.8$.
