15.1-2: Optimization

(and also a problem about second derivatives from 14.7)

Calculus III

College of the Atlantic

1. Let the temperature in a metal rod be given by the function $T(x, t)=$ $100 e^{-t} \sin (\pi x)$, where t is measured in minutes and x in meters. The rod is one meter long. (So $0 \leq x \leq 1$.)
(a) Sketch $T(x, 0)$ and $T(x, 0.1)$.
(b) Using the two sketches you just drew, determine the signs of f_{x}, f_{t}, $f_{x x}$, and $f_{x t}$ at $x=0.2$.
(c) Using the two sketches you just drew, determine the signs of f_{x}, f_{t}, $f_{x x}$, and $f_{x t}$ at $x=0.5$.
(d) Using the two sketches you just drew, determine the signs of f_{x}, f_{t}, $f_{x x}$, and $f_{x t}$ at $x=0.8$.
2. Consider the function $f(x, y)=1 / x+1 / y+x y$.
(a) Use calculus and algebra to find any critical points.
(b) By graphing the function and using common sense/critical thinking, classify any critical points.
(c) Graph a close-up of the function near any critical points you found. What do the contour lines look like?
(d) Graph a close-up of the function near $x=2, y=3$. What does the graph look like? What do the contour lines look like?
3. (Example 2 from Chapter 15.2 , slightly modified.) Twenty cubic meters of tofu are to be delivered to College of the Atlantic. The tofu-maker plans to purchase an open-top box in which to transport the tofu in numerous trips. The total cost is the cost of the box plus $\$ 2$ per trip-perhaps this is bio-diesel needed to fuel her truck. The box must have a height of 0.5 meters but the tofu-maker can choose the length and the width. The cost of the box is $\$ 20 / \mathrm{m}^{2}$ for the ends and $\$ 10 / \mathrm{m}^{2}$ for the bottom and sides. What size box should the trucker buy to minimize the total cost?
