16.2: Evaluating 1D and 2D Integrals

Calculus III

College of the Atlantic

1. Evaluate the following integrals:

$$
\begin{gather*}
\int_{2}^{5} x^{2} d x \tag{1}\\
\int_{2}^{5} y^{2} d y \tag{2}\\
\int_{2}^{5} 2 x^{2} d x \tag{3}\\
\int_{2}^{5} \ln (2) x^{2} d x \tag{4}\\
\int_{2}^{5} y x^{2} d x \tag{5}\\
\int_{2}^{y} x^{2} d x \tag{6}\\
\int_{2}^{x} x^{2} d x \tag{7}
\end{gather*}
$$

2. Evaluate the following integrals:

$$
\begin{gather*}
\int_{2}^{3} \sqrt{1+2 x} d x \tag{8}\\
\int_{0}^{4} x^{4} e^{-x} d x \tag{9}
\end{gather*}
$$

3. Evaluate the following integrals and sketch the region of integration:

$$
\begin{gather*}
\int_{1}^{4} \int_{0}^{2} d x d y \tag{10}\\
\int_{0}^{3} \int_{1}^{2} x y^{2} d x d y \tag{11}\\
\int_{0}^{3} \int_{1}^{2} x y^{2} d y d x \tag{12}
\end{gather*}
$$

4. Let R be a triangular region with corners at $(0,0),(0,4)$, and (2, 0). Write

$$
\begin{equation*}
\int_{R} x y d A \tag{13}
\end{equation*}
$$

as an iterated integral in two different ways and evaluate it.
5. Let R be the triangular region with corners at $(0,3),(1,1)$, and $(5,3)$. Write the integral

$$
\begin{equation*}
\int_{R} 3 x y^{2} d A \tag{14}
\end{equation*}
$$

as an iterated integral and sketch the region of integration.
6. Let R be the region in the first quadrant bounded by the x and y-axes and the line $x+2 y=6$. Write

$$
\begin{equation*}
\int_{R} \sqrt{x+2 y} d A \tag{15}
\end{equation*}
$$

as an iterated integral in two different ways and evaluate it.
7. Let R be the region bounded by $y=\sqrt{x}$ and $y=x^{3}$. Evaluate

$$
\begin{equation*}
\int_{R} 4 x y-y^{3} d A \tag{16}
\end{equation*}
$$

and sketch the region of integration.

