16.4: Integrals in Polar Coordinates

Calculus III

College of the Atlantic

1. Let the density of butterflies be given by $\rho(x, y, z)$. Write down an iterated integral that gives the total number of butterflies in a sphere of radius 3 centered on the origin.
2. Consider the integral $\int_{R} f(r, \theta) d A$. Write the integral as an iterated integral for the following regions R :
(a) R is a circle of radius 7, centered at the origin.
(b) R is the top half of the unit circle.
(c) R is the left half of the unit circle.
(d) R is an annulus (a flat donut) centered at the origin with inner radius 1 and outer radius 3 .
3. Repeat the above question, but express the iterated integrals as integrals in x and y instead of r and θ.
4. Evaluate the following integrals:

$$
\begin{gather*}
\int_{Q} \frac{1}{x^{2}+y^{2}} d A \tag{1}\\
\int_{Q} y d A \tag{2}
\end{gather*}
$$

Where Q is the region bounded by $y=\sqrt{1-x^{2}}, y=\sqrt{9-x^{2}}$, and the positive x and y axes.
5. Convert the following integral to polar coordinates and evaluate it:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y \tag{3}
\end{equation*}
$$

