16.5: Integrals in Cylindrical and Spherical Coordinates

Calculus III

College of the Atlantic

1. Set up a triple integral for a density function integrated over a cone with a radius of 16 and a height of 9 . The axis of the cone coincides with the z axis, and the base of the cone is in the $x-y$ plane.
2. Sketch or describe the following surfaces in spherical coordinates:
(a) $\rho=4$
(b) $\theta=\pi / 6$
(c) $\theta=\pi$
(d) $\phi=\pi / 6$
(e) $\phi=\pi / 2$
3. Set up a triple integral for a density function integrated over the first octant of a sphere of radius 9 .
4. Set up a triple integral for a density function integrated over the eighth octant of a sphere of radius 9 (i.e., the octant in which x is positive, y and z are negative.)
5. Determine a formula for the volume of a sphere of radius R by setting up and evaluating a a triple integral in spherical coordinates.
6. Determine a formula for the volume of a sphere of radius R by setting up and evaluating a a triple integral in cylindrical coordinates.
