18.2: More Evaluating Line Integrals

Calculus III
College of the Atlantic

Consider the vector field,

$$
\begin{equation*}
\vec{F}(x, y)=-y \vec{i}+x \vec{j} \tag{1}
\end{equation*}
$$

plotted in the figure above. In class last time we found that

$$
\begin{equation*}
\int_{C_{1}} \vec{F} \cdot d \vec{r}=4 \tag{2}
\end{equation*}
$$

where C_{1} is the line segment that starts at $(2,0)$ and ends at $(0,2)$.

1. Today we will investigate the line integral along the curve C_{2}, where C_{2} is the quarter-circle of radius 2 centered at the origin. First, write a parametrization for the curve.
2. Btw, for $r(\vec{t})$, what is $r^{\prime}(t)$ at $t=0, t=\pi / 4$, and $t=\pi / 2$? Draw the curve and draw the velocity vectors at these three points.
3. Without evaluating the integral, do you think

$$
\begin{equation*}
\int_{C_{2}} \vec{F} \cdot d \vec{r} \tag{3}
\end{equation*}
$$

is greater than or less than 4 ?
4. Now evaluate the integral.
5. Could \vec{F} be a gradient field?

