18.3 and 18.4:
 Path-independent Integrals and Green's Theorem

Calculus III

College of the Atlantic

1. Consider the vector field $\vec{F}=2 x \hat{i}+2 y \hat{j}$.
(a) Evaluate the integral:

$$
\begin{equation*}
\int_{C_{1}} \vec{F} \cdot d \vec{r} \tag{1}
\end{equation*}
$$

where C_{1} begins at $(0,0)$ and ends at $(2,3)$.
(b) Now find a scalar function f such that $\vec{\nabla} f=\vec{F}$. Use f to evaluate the integral in Eq. (1).
(c) Evaluate

$$
\begin{equation*}
\oint_{C_{2}} \vec{F} \cdot d \vec{r} \tag{2}
\end{equation*}
$$

where C_{2} is a clockwise circle of radius 14 centered at 1,2 .
2. Consider the vector field $\vec{F}=2 x y \hat{i}+x y \hat{j}$. Find a scalar f such that $\vec{\nabla} f=\vec{F}$. Use f to evaluate

$$
\begin{equation*}
\int_{C_{1}} \vec{F} \cdot d \vec{r} \tag{3}
\end{equation*}
$$

where C_{1} begins at $(0,0)$ and ends at $(2,2)$.
3. Which of the following are gradient vector fields?

$$
\begin{gather*}
\vec{F}=7 \hat{i}-4 \hat{j} \tag{4}\\
\vec{F}=7 \hat{i}-4 x \hat{j} \tag{5}\\
\vec{F}=7 \hat{i}-4 y \hat{j} \tag{6}\\
\vec{F}=x \hat{i}-y \hat{j} \tag{7}\\
\vec{F}=x^{3} \hat{i}+\frac{1}{y} \hat{j} \tag{8}\\
\vec{F}=x \cos (y) \hat{i}-\frac{1}{2} x^{2} \sin (y) \hat{j} \tag{9}
\end{gather*}
$$

