20.1: Divergence

Calculus III
College of the Atlantic

1. The density of air in a room is given by $f(x, y, z)=z+x y^{2}$. What is the mass of air in a sphere of radius 0.01 centered at $(1,2,3)$?
2. A vector field has a divergence $\nabla \cdot \vec{F}=z+x y^{2} \mathrm{in}^{3} / \mathrm{s}$. What is the flux flowing out of a sphere of radius 0.01 centered at $(1,2,3)$?
3. Find the divergence of the following vector fields:

$$
\begin{gather*}
\vec{F}=y \hat{i}-x \hat{j} \tag{1}\\
\vec{G}=x \hat{i}+y \hat{j} \tag{2}\\
\vec{H}=x \hat{i}-y \hat{j} \tag{3}\\
\vec{Q}=y \hat{i}-x^{2} y \hat{j}+x \hat{k}, \tag{4}
\end{gather*}
$$

4. Consider the vector field $\vec{F}=5 y \hat{j}$.
(a) Use the geometric definition to find the divergence at $(0,0,0)$. Use a cube of side c centered at $(0,0,0)$.
(b) Use the geometric definition to find the divergence at $(3,3,0)$. Use a cube of side c centered at $(3,3,0)$.
(c) Compute the divergence of \vec{F} and confirm that it is consistent with your answers above.
