20.3 and 20.4: Curl and Stokes' Theorem

Calculus III

College of the Atlantic

1. Let $\vec{G}=2 y \hat{i}-2 x \hat{j}$
(a) Sketch or describe the field.
(b) Calculate $\nabla \times \vec{G}$ and make a sketch of it.
(c) Use Stokes' Theorem to calculate $\int_{C} \vec{G} \cdot d \vec{r}$ where:
i. C is a circle parallel to the $y z$-plane of radius a, centered at the origin, oriented counter clockwise when viewed from the positive x axis.
ii. C is a circle parallel to the $x y$-plane of radius a, centered at a point on the z-axis, oriented counter clockwise when viewed from above.
2. Use Stokes' theorem to find the circulation of \vec{F} around the circle $x^{2}+y^{2}=4, z=1$, oriented counterclockwise when viewed from above, and where

$$
\begin{equation*}
\vec{F}=(z-2 y) \hat{i}+(3 x-4 y) \hat{j}+(z+3 y) \hat{k} \tag{1}
\end{equation*}
$$

3. Use the divergence theorem to find the flux of \vec{F}, given above in Eq. (1), out of a sphere of radius 3 centered at the origin.
4. Let $\vec{F}(x, y, z)$ be a vector field and $f(x, y, z)$ is a scalar function of three variables. Which of the following quantities are vectors and which are scalars. Which are not defined?
(a) $\operatorname{div} \vec{F}$
(b) $\operatorname{curl} \vec{F}$
(c) $\operatorname{div} f$
(d) $\operatorname{curl} f$
(e) ∇f
(f) $\nabla \vec{F}$
(g) $\nabla \times \vec{F}$
(h) $\nabla \cdot \vec{F}$
(i) $\nabla \cdot f$
(j) $\nabla \times f$
(k) $\nabla \times \nabla f$
(l) $\nabla \cdot \nabla \times \vec{F}$

Are any of these quantities automatically zero?

