Chapter 16: Exercises with Fractals and Dimension

Figure 1: Steps in the construction of the Koch Curve.

1. The Koch Curve

(a) Complete the following table using the successive steps in the construction of the Koch Curve, as illustrated in Fig. 1:

Step	Number of Segments	Length of Each Segment	Total Length
0			
1			
2			
3			
n			

(b) As n goes to infinity, what happens to the total length of the Koch Set?
(c) What is the dimension of the Koch Set?

2. The Sierpiński Triangle

(a) Draw a large Sierpiński triangle. Do so by starting with a large triangle and then removing triangles.
(b) Complete the following table using the successive steps for your Sierpinski construction:

Step	Number of Triangles	Area of Each Triangle	Total Area
0			
1			
2			
3			
n			

(c) As n goes to infinity, what happens to the total area of the Sierpiński triangle?

Figure 2: Steps in the construction of the Cantor Set.

3. The Cantor Set

(a) Complete the following table using the successive steps in the construction of the Middle-Thirds Cantor Set, as illustrated in Fig. 2:

Step	Number of Segments	Length of Each Segment	Total Length
0			
1			
2			
3			
n			

(b) As n goes to infinity, what happens to the total length of the Cantor Set?
(c) What is the dimension of the Cantor Set?

