# Chapter 19: Fractal Distributions 

Worksheet to accompany
David Feldman, Chaos and Fractals: An Elementary Introduction, Oxford University Press, 2012

Suppose the probability that a branch of a tree has length $x$ is given by

$$
\begin{equation*}
p(x)=0.61 \frac{1}{x^{2}} . \tag{1}
\end{equation*}
$$

1. What is the probability that a branch has length 2 ?
2. What is the probability that a branch has length 4 ?
3. What is the probability that a branch has length 8 ?
4. How many times more likely are branches of length 2 compared to branches of length 4 ?
5. How many times more likely are branches of length 4 compared to branches of length 8 ?

Now suppose that in a different tree, the probability of that a branch has length $x$ is given by

$$
\begin{equation*}
p(x)=\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{x-1} \tag{2}
\end{equation*}
$$

Answer the above five questions for this other tree.

