Chapter 19: More Histograms

Worksheet to accompany
David Feldman, Chaos and Fractals: An Elementary Introduction, Oxford University Press, 2012

In this exercise you will convert playing cards into numbers as follows. Number cards have a value equal to their number. Aces count as one. And face cards (king, queen, jack), all count as ten.

1. Give your deck of cards a quick shuffle and pull a card from the deck. Write that number down. Put that card back in the deck.
2. Repeat the above process four more times, so that you have a list of five numbers.
3. Add the numbers together and write the number on a post-it.
4. Repeat the above three steps a few more times so that you have around ten post-its with numbers on them.
5. Then take your post-its and stick them on the histogram on the board.

Suppose the probability that a branch of a tree has length x is given by

$$
\begin{equation*}
p(x)=0.61 \frac{1}{x^{2}} \tag{1}
\end{equation*}
$$

1. What is the probability that a branch has length 2 ?
2. What is the probability that a branch has length 4 ?
3. What is the probability that a branch has length 8 ?
4. How many times more likely are branches of length 2 compared to branches of length 4 ?
5. How many times more likely are branches of length 4 compared to branches of length 8 ?

Now suppose that in a different tree, the probability of that a branch has length x is given by

$$
\begin{equation*}
p(x)=\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{x-1} \tag{2}
\end{equation*}
$$

Answer the above five questions for this other tree.

