Thermal Energy

Physics and Mathematics of Sustainable Energy
College of the Atlantic.

1. You decide to take a warm bath and fill up a 50 gallon bathtub. Estimate the energy needed to warm up the water. Assume that you need to heat the water from 5C to 40 C . How much energy does this take? Express your answer in MJ, kWh, and BTUs.
2. In 2010-11 the Seafox Dormitory used 4120 gallons of heating oil.
(a) How much would this fuel cost?
(b) How much energy thermal energy is this? Answer in BTUs, MMBTUs, and kWh. Put this number into context.
(c) How much carbon dioxide is released into the atmosphere as a result of burning this fuel? Put this number into context.
3. Suppose the Seafox furnace is 70% efficient. In that case, how much of the thermal energy from burning the oil ends up inside Seafox? This quantity is known as the heating load.
4. Suppose we replaced the Seafox furnace with one that is 90% efficient.
(a) How much fuel would we need to heat Seafox with this more efficient furnace?
(b) How much money would you save in one year?
(c) How much less CO_{2} would be emitted in one year?

- $1 \mathrm{kWh}=3.6 \mathrm{MJ}=3412 \mathrm{BTU}$
- $1 \mathrm{MMBTU}=1,000,000 \mathrm{BTU}$
- Calorific value of heating oil: $12.8 \mathrm{kWh} / \mathrm{kg}, 37.3 \mathrm{MJ} / \mathrm{L}, 139,000 \mathrm{BTU} / \mathrm{gallon}$
- Carbon intensity of heating oil: 260 g of CO_{2} per kWh of thermal energy
- 1 gallon $=3.8$ liters
- Current average cost of heating oil in Maine: $\$ 2.30 /$ gallon.

