Cars: Part I

Physics and Mathematics of Sustainable Energy

College of the Atlantic. October 23, 2023
A few facts:

- Gasoline: 10 kWh per liter or 38 kWh per gallon
- Average gas mileage for car in US: 25 mph , but this ranges considerably.
- Carbon intensity of gasoline: 240 g per kWh .
- Burning one gallon of gasoline releases around 9 kg of CO_{2}.
- Carbon intensity of electricity in grams of CO_{2} e per kWh :
- US: 376
- Brazil: 102
- China: 531

1. Suppose you drive 20 miles each way to work every workday in an average US gas car.
(a) How much gas does this use?
(b) How much energy does this use? Answer in kWh per person per day. Is this a lot or a little?
(c) How much carbon dioxide is emitted by the car in one year? Answer in tons per year. Is this a lot or a little?
2. Suppose you buy a 10 kW (nameplate) solar PV system.
(a) How much electricity will you generate in one year? Assume a capacity factor of 0.12.
(b) Assuming that the solar PV saves 350 grams of emissions for every kWh , how much CO_{2} will have been prevented due to your purchase of the solar PV panels?
3. Suppose you have two lights on your desk that you leave on for an average of 2 hours a day. You switch from a compact fluorescent bulbs that draw 14 watts to LEDs that draw 7 watts.
(a) About how much energy will you save in one year?
(b) How much less CO_{2} will be emitted as a result?
(c) How far would you have to drive to emit an amount of carbon dioxide equivalent to that which you saved by switching bulbs?
