Logistic Equation Warm-Up Introduction to Epidemiological Modeling
 College of the Atlantic. April 7, 2023

Consider again the differential equation

$$
\begin{equation*}
\frac{d P}{d t}=f(P), \tag{1}
\end{equation*}
$$

where $f(P)$ is shown in the figure. We will only consider non-negative P.

1. Sketch a few representative ${ }^{12}$ solutions $P(t)$ to Eq. (1).
2. A possible formula the $f(P)$ in Eq. (1) is:

$$
\begin{equation*}
f(P)=k P\left(1-\frac{P}{K}\right), \tag{2}
\end{equation*}
$$

where K and k are positive constants.
(a) Convince yourself that the graph of Eq. (2) looks like the figure.
(b) What is the practical meaning of K ? If K is doubled, how do the solutions $P(t)$ change?
(c) What is the practical meaning of k ? If k is doubled, how do the solutions $P(t)$ change?
3. To what situation(s) might Eq. (1) apply?

[^0]
[^0]: ${ }^{1}$ I.e., choose a few different initial conditions that, taken together, give an overview of the sorts of things solutions to the equation can do.
 ${ }^{2}$ This is the same thing we did in class on Tuesday.

