The Seasonally Forced SEIR Model

College of the Atlantic. May 10, 2023

Below is a seasonally forced SEIR model with demographics.

$$
\begin{gather*}
\frac{d S}{d t}=\mu-\beta(t) S I-\mu S \tag{1}\\
\frac{d E}{d t}=\beta(t) S I-\sigma E-\mu E \tag{2}\\
\frac{d I}{d t}=\sigma E-\gamma I-\mu I \tag{3}\\
\frac{d R}{d t}=\gamma I-\mu R \tag{4}
\end{gather*}
$$

- The Greek letters all represent model parameters: various rates.
- The capital Latin letters (SEIR) are the variables. These are the things we're trying to solve for. I.e., we want S as a function of time, I as a function of time, and so on.
- The quantity $\beta(t)$ is now a time-dependent parameter. This allows to have an infection rate that varies seasonally.

We will use the following for our time-dependent infection rate:

$$
\begin{equation*}
\beta(t)=\beta_{0}\left(1+\beta_{1} \cos \left(\frac{2 \pi t}{365}\right)\right) \tag{5}
\end{equation*}
$$

Let's explore and ponder.

1. I will send you a new copy of some basic SEIR code. Use the following parameters (which should already be in the code):

- $\beta=1000 / 365$.
- People are exposed for an average of 8 days.
- People are infectious for an average of 5 days.
- People live an average of 50 years.

I chose these values because they are what was used in Ottar N. Bjørnstad Epidemics: models and data using R. Springer Nature, 2022. These model parameters are roughly appropriate for measles.
2. We're going to be interested in endemicity and periodic small-ish outbreaks. So let's use different starting values than usual:

- $S_{0}=0.06$
- $E_{0}=0$
- $I_{0}=0.001$
- $R_{0}=1-S_{0}-E_{0}-I_{0}$

These parameter values are fairly close to the endemic equilibrium values.
3. Before worrying about $\beta(t)$, run the model with the above parameters and initial conditions. Make a plot just of $I(t)$. You should see oscillations as the number of infecteds approach the equilibrium endemic value. By zooming in on the graph after the simulation has run for a while, estimate the period of the oscillations.
4. Spend some time pondering Eq. (5). Some questions to answer:
(a) What does $\beta(t)$ look like?
(b) What is the meaning of β_{0} and β_{1} ?
(c) Why is there a $2 \pi / 365$ inside the cos?
(d) Why is there at +1 in front of the cos?
(e) Why is it cos and not sin?

I would suggest using wolframalpha.com ${ }^{1}$ to make some quick plots of $\beta(t)$.
5. Now that you have a deep understanding of $\beta(t)$, code it up! As always, if you have questions or hit roadblocks, let us know. For all of what follows, keep $\beta_{0}=1000 / 365$. Now let's try it out.
6. What happens if $\beta_{1}=0.05$? The plot may look a little weird. Focus on the longer-term behavior once $I(t)$ seems to settle in to a steady state. What is the period of oscillations. Does this make sense?
7. Hey. We should check to see if we can recover our unforced SEIR results. Set beta $=0$ and run the simulation. Your results should be the same as what you saw for Question 3.
8. Now let's make the seasonality stronger. Try $\beta_{1}=0.2$. Huh. What is the period of the $I(t)$ oscillations once it appears to settle into a steady state. Does this make sense?

[^0]
[^0]: ${ }^{1}$ or desmos, if you're one of those people. © ${ }^{(}$.

