Homework Two Introduction to Epidemiological Modeling College of the Atlantic

Due Friday, April 14, 2023

Here are some instructions for how to submit this part of the assignment.

- Do the problems by hand using pencil (or pen) and paper. There is no need to type this assignment.
- If you like working on a tablet, go for it.
- Make a pdf scan of your work using genius scan or some similar scanning app. Please make the homework into a single pdf, not multiple pdfs or pngs.
- Submit the assignment on google classroom. Please don't email it to me. Thanks.
- If you want, you can do these problems in pairs and submit one assignment for the two of you.

1. A freshly-brewed cup of coffee is at $90^{\circ} \mathrm{C}$. It sits on the table in a classroom in which the temperature is $20^{\circ} \mathrm{C}$. What will happen to the temperature of the coffee? Make a qualitatively accurate sketch of the temperature $T(t)$ as a function of the time t, where t is measured in minutes. Think about the concavity of the graph.
2. The following differential equation is known as Newton's Law of Cooling:

$$
\begin{equation*}
\frac{d T}{d t}=-0.1(T-20) \tag{1}
\end{equation*}
$$

(a) Sketch the right-hand side of Eq.(1).
(b) Sketch the solution to Eq. (1) for the case where $T(0)=90$.
3. In its more general form, Newton's Law of Cooling is:

$$
\begin{equation*}
\frac{d T}{d t}=-k(T-A) \tag{2}
\end{equation*}
$$

(a) What is the physical meaning of k ? What happens to solutions of the differential equation if k is doubled?
(b) What is the physical meaning of A ? What happens to solutions of the differential equation if A is doubled?
4. Consider again Eq. (1) with $T(0)=90$. Use Euler's method with $\Delta t=5$ to come up with an approximate solution to the differential equation. Find a solution up to and including $t=25$. Please show enough work so it's clear what you're doing.
5. It is possible to determine an analytic (I.e. an exact formula) solution to Eq. (2). The solution is:

$$
\begin{equation*}
T(t)=A+(T(0)-A) e^{-k t} \tag{3}
\end{equation*}
$$

Use calculus and algebra verify that the $T(t)$ of Eq. (3) is a solution to Eq. (2).
6. Use R to plot (on the same axes) your Euler solution from Problem 4 and the exact solution, Eq. (3), with $A=20$ and $T(0)=90$.
7. Use the Euler function in R to plot (on the same axes) the exact solution and Euler solutions for $\Delta T=5, \Delta T=1$, and $\Delta T=0.1$.

