Linear Algebra Exercises for Lecture One

Due Tuesday, September 17, 2013 (?)

1. Determine the value of $A x$, where

$$
\begin{gather*}
A=\left(\begin{array}{rr}
1 & -2 \\
2 & 4
\end{array}\right) \tag{1}\\
x=\binom{1}{4} \tag{2}
\end{gather*}
$$

Carry out this multiplication two ways:
(a) By forming a linear combination of the columns of A.
(b) By taking two dot products (aka "across-by-down".)
2. Consider the following system of equations:

$$
\begin{gather*}
2 x+y=3 \tag{3}\\
x-2 y=-1 . \tag{4}
\end{gather*}
$$

(a) Solve the equations using the row picture. Sketch the two lines and determine their point of intersection.
(b) Solve the equations using the column picture. Sketch the two columns and illustrate geometrically the linear combination of the two columns that yields $(3,-1)$.
3. Consider the system $A x=b$, where

$$
A=\left(\begin{array}{rrr}
1 & 2 & 0 \tag{5}\\
0 & 2 & -1 \\
1 & 0 & 0
\end{array}\right)
$$

and

$$
b=\left(\begin{array}{r}
1 \tag{6}\\
-1 \\
1
\end{array}\right)
$$

(a) Determine the solution to the system. Use the column picture.
(b) Can you solve $A x=b$ for any b ? It may help to sketch the three columns.
(c) Do all linear combinations of the columns of A fill 3D space? If not, what do all the linear combinations look like?
4. Repeat the above question, but let

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \tag{7}\\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

and

$$
b=\left(\begin{array}{l}
6 \tag{8}\\
2 \\
2
\end{array}\right)
$$

