Linear Algebra Exercises for Lecture Twenty-Two: Markov Matrices

Due Tuesday, November 12, 2013

1. Chapter 8.3, problem 1
2. Chapter 8.3, problem 5
3. In a certain town the weather can either be rainy or sunny. Data taken over a number of years has shown that if it is rainy on one day, there is a 60% chance that it will be rainy the next day. And if it is sunny on one day, there is a 70% chance it will be rainy the next day.
(a) Construct a Markov transition matrix that describes this situation. Call this matrix A.
(b) What is the meaning of the elements of the matrix A^{9} ?
(c) It is rainy today. What is the probability that it is rainy tomorrow?
(d) It is rainy today. What is the probability that it is rainy 7 days later?
(e) In the long run, what fraction of the days are rainy?
(f) What is A^{k} in the limit that k goes to infinity?
4. Consider the two vectors

$$
\begin{equation*}
q_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}, \quad q_{2}=\frac{1}{\sqrt{2}}\binom{-1}{1} \tag{1}
\end{equation*}
$$

(a) Verify that these vectors are orthonormal.
(b) We can write any vector v as a linear combination of the q 's:

$$
\begin{equation*}
v=c_{1} q_{1}+c_{2} q_{2} . \tag{2}
\end{equation*}
$$

Write down a general formula for c_{1} and c_{2}.
(c) Use the formula you just wrote down to solve for c_{1} and c_{2} for the vector $v=\left(\begin{array}{ll}1 & 4\end{array}\right)$.
(d) Make a sketch of the situation and show the geometric meaning of c_{1} and c_{2}.

