Linear Algebra
 Exercises for Lecture Thirty: Image Compression and Change of Basis

Due Friday, November 22, 2013

Let T be a linear transformation $T: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$. Let v_{1}, v_{2} be the elements of the standard basis. (I.e., $v_{1}=(1,0)$ and $v_{2}=(0,1)$. Let the action of T on the basis vectors be given by:

$$
\begin{align*}
& T\left(v_{1}\right)=3 v_{1}+v_{2}, \tag{1}\\
& T\left(v_{2}\right)=v_{1}+3 v_{2} . \tag{2}
\end{align*}
$$

1. What is $T\left(2 v_{1}+4 v_{2}\right)$? Answer this question without forming a matrix; use the linearity properties directly.
2. Determine the matrix representation A for the linear transformation T using the standard basis.
3. Calculate $A x$, where $x=(2,4)$. How does this compare to your answer to question 1 ?
4. Determine the eigenvalues and eigenvectors for A.
5. Normalize the eigenvectors. Call these eigenvectors u_{1} and u_{2}.
6. Write v_{1} as a linear combination of u_{1} and u_{2}.
7. Write v_{2} as a linear combination of u_{1} and u_{2}.
8. Write down the matrix M that converts a vector in the eigenbasis into a vector in the standard basis. That is, let $c=\left(c_{1}, c_{2}\right)$ be the coefficients in the u basis:

$$
\begin{equation*}
x=c_{1} u_{1}+c_{2} u_{2} . \tag{3}
\end{equation*}
$$

The matrix M takes the vector in the u basis and converts it to the v basis: $M c=x$.
9. Find the inverse of M.
10. Evaluate $M^{-1} v_{1}$. What does this represent?
11. Determine $T\left(u_{1}\right)$ and $T\left(u_{2}\right)$.
12. Use your answer to the above question to determine a matrix representation for T in the u basis. Call this matrix B.
13. Verify that $B=M^{-1} A M$.

