Linear Algebra

Exercises for Lecture Thirty: Image Compression and Change of Basis

Due Friday, November 22, 2013

Let T be a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$. Let v_1, v_2 be the elements of the standard basis. (I.e., $v_1 = (1,0)$ and $v_2 = (0,1)$. Let the action of T on the basis vectors be given by:

$$T(v_1) = 3v_1 + v_2 , (1)$$

$$T(v_2) = v_1 + 3v_2 . (2)$$

- 1. What is $T(2v_1 + 4v_2)$? Answer this question without forming a matrix; use the linearity properties directly.
- 2. Determine the matrix representation A for the linear transformation T using the standard basis.
- 3. Calculate Ax, where x = (2, 4). How does this compare to your answer to question 1?
- 4. Determine the eigenvalues and eigenvectors for A.
- 5. Normalize the eigenvectors. Call these eigenvectors u_1 and u_2 .
- 6. Write v_1 as a linear combination of u_1 and u_2 .
- 7. Write v_2 as a linear combination of u_1 and u_2 .
- 8. Write down the matrix M that converts a vector in the eigenbasis into a vector in the standard basis. That is, let $c = (c_1, c_2)$ be the coefficients in the u basis:

$$x = c_1 u_1 + c_2 u_2 . (3)$$

The matrix M takes the vector in the u basis and converts it to the v basis: Mc = x.

- 9. Find the inverse of M.
- 10. Evaluate $M^{-1}v_1$. What does this represent?
- 11. Determine $T(u_1)$ and $T(u_2)$.
- 12. Use your answer to the above question to determine a matrix representation for T in the u basis. Call this matrix B.
- 13. Verify that $B = M^{-1}AM$.