Linear Algebra
 Exercises for Lecture Nine: Independence, Basis, and Dimension

Due Friday, October 11, 2013

1. Consider the following three vectors:

$$
\begin{align*}
& v_{1}=\binom{1}{2} \tag{1}\\
& v_{2}=\binom{-1}{2} \tag{2}\\
& v_{3}=\binom{1}{0} \tag{3}
\end{align*}
$$

(a) What is the span of the three vectors?
(b) What is the dimension of the space that they span?
(c) Do the three vectors span \mathbb{R}^{3} ?
(d) Are the three vectors independent?
(e) If possible, find non-zero c_{1}, c_{2}, c_{3} such that:

$$
\begin{equation*}
C_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0 \tag{4}
\end{equation*}
$$

(f) Write down a basis for the space spanned by v_{1}, v_{2}, and v_{3}.
(g) Write down another basis for the space spanned by v_{1}, v_{2}, and v_{3}.
2. Consider the matrix A :

$$
A=\left(\begin{array}{rrr}
1 & 2 & 4 \tag{5}\\
2 & 3 & 5 \\
0 & 4 & 12
\end{array}\right)
$$

(a) Do the columns of A span $C(A)$?
(b) Are the columns of A independent? Answer this question by determing $\operatorname{rref}(A)$.
(c) What is the dimension of $C(A)$?
(d) What is $N(A)$?
(e) What is the dimension of $N(A)$?
3. Chapter 3.5, problem 2
4. Chapter 3.5, problem 5
5. Chapter 3.5, problem 15
6. Chapter 3.5, problem 18

