Chapter 1.5

Linear Algebra with applications to differential equations College of the Atlantic. Winter 2019

1. (Re)introduce yourself to others in your group. Briefly share with your group-mates something about a book or article you've read recently that you found interesting or memorable.
2. Evaluate $\frac{d}{d x}\left(x^{3} \sin (x)\right)$.
3. Evaluate $\frac{d}{d x}\left(x^{3} y\right)$, where y is a function of x.
4. Evaluate $\frac{d}{d x} e^{\sin (x)}$.
5. Evaluate $\frac{d}{d x} e^{G(x)}$.
\qquad
6. Consider the differential equation:

$$
\begin{equation*}
\frac{d y}{d t}+2 x y=x \tag{1}
\end{equation*}
$$

(a) Find the general solution to this equation.
(b) Find the particular solution that has $y(0)=2$.
7. Consider the differential equation:

$$
\begin{equation*}
\frac{d y}{d t}-\frac{y}{x}=-x e^{-x} \tag{2}
\end{equation*}
$$

(a) Find the general solution to this equation.
(b) Find the particular solution that has $y(0)=2$.
(c) Huh?

[^0]
[^0]: ${ }^{1}$ Remember that dots mean you should stop.

