Chapter 4.1

Linear Algebra with applications to differential equations College of the Atlantic. Winter 2019

- 1. (Re)introduce yourself to your partners and briefly share something you did on Wednesday instead of linear algebra.
- 2. Here are two vectors in \mathbb{R}^2 : $\vec{u} = (1, 2), \vec{v} = (1, -1), \vec{w} = (4, 4).$
 - (a) Are \vec{u} and \vec{v} linearly dependent or independent?
 - (b) Are \vec{u} and \vec{w} linearly dependent or independent?
 - (c) Solve for a and b: $a\vec{u} + b\vec{v} = 0$.
 - (d) Solve for a and b: $a\vec{u} + b\vec{v} = \vec{w}$.
- 3. Here are three vectors in \mathbb{R}^3 : $\vec{u} = (1, 2, 0), \vec{v} = (1, -1, 1), \vec{w} = (2, 1, 1)$. Are $\vec{v}, \vec{u}, \vec{w}$ linearly dependent or independent
- 4. Here are three vectors in \mathbb{R}^3 : $\vec{u} = (1, 2, 7), \vec{v} = (0, 1, 2), \vec{w} = (2, -2, 2)$. Are $\vec{v}, \vec{u}, \vec{w}$ linearly dependent or independent? (Does this problem look familiar?)

.....

- 5. Let V consist of all vectors $\vec{x} = (x_1, x_2, x_3)$ such that $x_1 + x_2 + x_3 = 0$. Is V a subspace of \mathbb{R}^3 ?
- 6. Let V consist of all vectors $\vec{x} = (x_1, x_2, x_3)$ such that $x_1 + x_2 + x_3 = 1$. Is V a subspace of \mathbb{R}^3 ?