Chapter 4.2

Linear Algebra with applications to differential equations College of the Atlantic. Winter 2019

- 1. (Re)introduce yourself to your partners and briefly discuss a song or piece of music that you've been listening to a lot lately.
- 2. Let W consist of all vectors of the form $\vec{x} = (x_1, 0, x_3)$. Is W a subspace of \mathbb{R}^3 ?
- 3. Let W consist of the set of all vectors in \mathbb{R}^3 such that $x_2 = 1$. Is W a subspace of \mathbb{R}^3 ?
- 4. Let W consist of the set of all vectors in \mathbb{R}^3 such that $x_1 = 2x_2$. Is W a subspace of \mathbb{R}^3 ?
- 5. Let W consist of all vectors $\vec{x} = (x_1, x_2, x_3)$ such that $x_1 + x_2 + x_3 = 1$. Is W a subspace of \mathbb{R}^3 ?
- 6. Let W consist of all vectors \vec{x} in \mathbb{R}^5 whose elements are all non-negative. Is W a subspace of \mathbb{R}^5 ?
- 7. Consider a homogeneous equation of the form $A\vec{x} = 0$, with x in \mathbb{R}^4 . Let the reduced row echelon form of A be:

$$A = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$
 (1)

Write the set of solutions in the form $s\vec{u} + t\vec{v}$.

.....

- 8. Determine if each of the following sets of vectors are linearly independent:
 - (a) $\vec{v_1} = (1, 4, 0), \vec{v_2} = (1, 2, -1), \vec{v_3} = (1, 5, -2), \vec{v_4} = (0, 1, 0).$
 - (b) $\vec{v_1} = (1, 2, 0), \vec{v_2} = (1, 2, -1), \vec{v_3} = (1, 0, 2).$
 - (c) $\vec{v_1} = (1, 2, 2, 1), \vec{v_2} = (2, 3, 4, 1), \vec{v_3} = (3, 8, 7, 5)$