Chapter 4.2

Linear Algebra with applications to differential equations College of the Atlantic. Winter 2019

1. (Re)introduce yourself to your partners and briefly discuss a song or piece of music that you've been listening to a lot lately.
2. Let W consist of all vectors of the form $\vec{x}=\left(x_{1}, 0, x_{3}\right)$. Is W a subspace of \mathbb{R}^{3} ?
3. Let W consist of the set of all vectors in \mathbb{R}^{3} such that $x_{2}=1$. Is W a subspace of \mathbb{R}^{3} ?
4. Let W consist of the set of all vectors in \mathbb{R}^{3} such that $x_{1}=2 x_{2}$. Is W a subspace of \mathbb{R}^{3} ?
5. Let W consist of all vectors $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ such that $x_{1}+x_{2}+x_{3}=1$. Is W a subspace of \mathbb{R}^{3} ?
6. Let W consist of all vectors \vec{x} in \mathbb{R}^{5} whose elements are all non-negative. Is W a subspace of \mathbb{R}^{5} ?
7. Consider a homogeneous equation of the form $A \vec{x}=0$, with x in \mathbb{R}^{4}. Let the reduced row echelon form of A be:

$$
A=\left[\begin{array}{llll}
1 & 0 & 2 & 2 \tag{1}\\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Write the set of solutions in the form $s \vec{u}+t \vec{v}$.
8. Determine if each of the following sets of vectors are linearly independent:
(a) $\overrightarrow{v_{1}}=(1,4,0), \overrightarrow{v_{2}}=(1,2,-1), \overrightarrow{v_{3}}=(1,5,-2), \overrightarrow{v_{4}}=(0,1,0)$.
(b) $\overrightarrow{v_{1}}=(1,2,0), \overrightarrow{v_{2}}=(1,2,-1), \overrightarrow{v_{3}}=(1,0,2)$.
(c) $\overrightarrow{v_{1}}=(1,2,2,1), \overrightarrow{v_{2}}=(2,3,4,1), \overrightarrow{v_{3}}=(3,8,7,5)$

