Chapter 4.4 \& 4.5

Linear Algebra with applications to differential equations College of the Atlantic. Winter 2019

1. (Re)introduce yourself to your partners and briefly share something-big or small-that has pleasantly surprised you lately.
2. Write $\vec{x}=(2,-2)$ as a linear combination of $\overrightarrow{v_{1}}=(1,0)$ and $\overrightarrow{v_{2}}=(0,1)$.
(a) Is the linear combination you found unique?
(b) Are there any vectors \vec{x} that cannot be written as a linear combination of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$?
(c) Do $\overrightarrow{v_{2}}$ and $\overrightarrow{v_{2}}$. span \mathbb{R}^{2} ?
(d) Is the set consisting of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ a basis for \mathbb{R}^{2} ?
3. Write $\vec{x}=(2,-2)$ as a linear combination of $\overrightarrow{v_{1}}=(1,1)$ and $\overrightarrow{v_{2}}=(1,-1)$.
(a) Is the linear combination you found unique?
(b) Are there any vectors \vec{x} that cannot be written as a linear combination of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$?
(c) Do $\overrightarrow{v_{2}}$ and $\overrightarrow{v_{2}}$. span \mathbb{R}^{2} ?
(d) Is the set consisting of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ a basis for \mathbb{R}^{2} ?
4. Write $\vec{x}=(2,-2)$ as a linear combination of $\overrightarrow{v_{1}}=(1,1), \overrightarrow{v_{2}}=(1,-1)$, and $\overrightarrow{v_{3}}=(1,0)$.
(a) Is the linear combination you found unique?
(b) Are there any vectors \vec{x} that cannot be written as a linear combination of $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, and $\overrightarrow{v_{3}}$?
(c) Do $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, and $\overrightarrow{v_{3}}$ span \mathbb{R}^{2} ?
(d) Is the set consisting of $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, and $\overrightarrow{v_{3}}$ a basis for \mathbb{R}^{2} ?
5. Write $\vec{x}=(2,-2)$ as a linear combination of $\overrightarrow{v_{1}}=(1,-1)$.
(a) Is the linear combination you found unique?
(b) Are there any vectors \vec{x} that cannot be written as a linear combination of $\overrightarrow{v_{1}}$?
(c) Does $\overrightarrow{v_{1}}$ span \mathbb{R}^{2} ?
(d) Is $\overrightarrow{v_{1}}$ a basis for \mathbb{R}^{2} ?
6. Determine if each of the following sets of vectors are a basis for \mathbb{R}^{3}.
(a) $\overrightarrow{v_{1}}=(1,2,0), \overrightarrow{v_{2}}=(1,2,-1), \overrightarrow{v_{3}}=(1,0,2)$.
(b) $\overrightarrow{v_{1}}=(1,2,2), \overrightarrow{v_{2}}=(2,3,4), \overrightarrow{v_{3}}=(3,8,7), \overrightarrow{v_{4}}=(3,-8,7)$
(c) $\overrightarrow{v_{1}}=(1,4,0), \overrightarrow{v_{2}}=(1,2,-1)$.
7. Find a basis for the row space and a basis for the column space of the matrix A :

$$
A=\left[\begin{array}{rrr}
1 & 2 & 3 \tag{1}\\
1 & 5 & -9 \\
2 & 5 & 2
\end{array}\right]
$$

