Chapter 7.3

Linear Algebra with applications to differential equations College of the Atlantic. Winter 2019

1. (Re)introduce yourself to your partners. I dunno. Make small talk for a moment.
2. A mass slides horizontally on a surface that is not frictionless. The differential equation that describes this motion is:

$$
\begin{equation*}
x^{\prime \prime}=-k x-a x^{\prime}, \tag{1}
\end{equation*}
$$

Where k is the spring constant and a is the friction coefficient. Let $k=8$ and $a=4$.
(a) Convert this second-order equation to a system of first-order equations.
(b) Use matrix methods to determine the general solution to the differential equation.
(c) Find the solution that satisfies $x(0)=3, x^{\prime}(0)=0$.
3. Consider the following system:

$$
\vec{x}^{\prime}=\left[\begin{array}{rrr}
9 & 4 & 0 \tag{2}\\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right] \vec{x} .
$$

It turns out that the characteristic equation for this matrix is:

$$
\begin{equation*}
(5-\lambda)(3-\lambda)^{2}=0 \tag{3}
\end{equation*}
$$

Find the general solution to the differential equation.
4. Consider the following system:

$$
\vec{x}^{\prime}=\left[\begin{array}{rr}
1 & -3 \tag{4}\\
3 & 7
\end{array}\right] \vec{x} .
$$

(a) Find the general solution to the differential equation.
(b) Uhhh.

