## Chapter 7.3

## Linear Algebra with applications to differential equations College of the Atlantic. Winter 2019

1. (Re)introduce yourself to your partners. I dunno. How's your week ten going?
2. Consider the following linear system:

$$
\begin{align*}
x_{1}^{\prime} & =4 x_{1}+2 x_{2},  \tag{1}\\
x_{2}^{\prime} & =3 x_{1}-x_{2} . \tag{2}
\end{align*}
$$

(a) Find the general solution.
(b) Hey! You did this last week. Look for it in your notes.
(c) Find the solution for which $\vec{x}(0)=(2,-6)$. Plot the solutions. What is their long-term behavior?
(d) Find the solution for which $\vec{x}(0)=(2,1)$. Plot the solutions. What is their long-term behavior?
(e) Find the solution for which $\vec{x}(0)=(0,-4)$. Plot the solutions. What is their long-term behavior?
3. Consider the linear system:

$$
\begin{gather*}
x_{1}^{\prime}=6 x_{2}  \tag{3}\\
x_{2}^{\prime}=-6 x_{1} \tag{4}
\end{gather*}
$$

(a) Sketch the direction field for this differential equation.
(b) Using eigenmethods, find the general solution to this system.
(c) Find the solution for which $\vec{x}(0)=(2,0)$. Plot the solutions. What is their long-term behavior?
(d) Find the solution for which $\vec{x}(0)=(0,2)$. Plot the solutions. What is their long-term behavior?
4. Repeat the above question for

$$
\begin{align*}
& x_{1}^{\prime}=-3 x_{1}+6 x_{2},  \tag{5}\\
& x_{2}^{\prime}=-6 x_{1}-3 x_{2} \tag{6}
\end{align*}
$$

If we're running short of time, which we probably will be, let's use wolfram alpha to make the direction field and find the eigenstuff.

