2 Vectors, matrices, and linear combinations

2.1 Vectors and linear combinations

Preview Activity 2.1.1 Scalar Multiplication and Vector Addition. Suppose that

$$
\mathbf{v}=\left[\begin{array}{l}
3 \\
1
\end{array}\right], \mathbf{w}=\left[\begin{array}{r}
-1 \\
2
\end{array}\right]
$$

a. Find expressions for the vectors

$$
\begin{array}{cccc}
\mathbf{v}, & 2 \mathbf{v}, & -\mathbf{v}, & -2 \mathbf{v}, \\
\mathbf{w}, & 2 \mathbf{w}, & -\mathbf{w}, & -2 \mathbf{w} .
\end{array}
$$

and sketch them using Figure 2.1.2.

Figure 2.1.2 Sketch the vectors on this grid.
b. What geometric effect does scalar multiplication have on a vector? Also, describe the effect that multiplying by a negative scalar has.
c. Sketch the vectors $\mathbf{v}, \mathbf{w}, \mathbf{v}+\mathbf{w}$ using Figure 2.1.3.

Figure 2.1.3 Sketch the vectors on this grid.
d. Consider vectors that have the form $\mathbf{v}+c \mathbf{w}$ where c is any scalar. Sketch a few of these vectors when, say, $c=-2,-1,0,1$, and 2 . Give a geometric description of this set of vectors.

Figure 2.1.4 Sketch the vectors on this grid.
e. If c and d are two scalars, then the vector

$$
c \mathbf{v}+d \mathbf{w}
$$

is called a linear combination of the vectors \mathbf{v} and \mathbf{w}. Find the vector that is the linear combination when $c=-2$ and $d=1$.
f. Can the vector $\left[\begin{array}{r}-31 \\ 37\end{array}\right]$ be represented as a linear combination of \mathbf{v} and \mathbf{w} ? Asked differently, can we find scalars c and d such that $c \mathbf{v}+d \mathbf{w}=\left[\begin{array}{r}-31 \\ 37\end{array}\right]$.

